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An analytical approach based on the average Hamiltonian the- during the evolution of the spin system have been suggested
ory is proposed for efficient calculation of the MAS NMR spectra (4, 10, 14–16) .
of a dipolar-coupled homonuclear spin-1

2 pair. For this purpose a The lineshapes of a coupled spin-1
2 pair in a MAS NMR

superoperator formalism is developed which allows one to describe spectrum have been successfully simulated by Levitt et al.
the spectra over a broad span of sample spinning rates, including (5 ) by means of numerical calculations in which one sample
the exact rotational resonances. This formalism can also be applied rotation period was divided into a large number of small
to the description of 2D polarization exchange spectra, which in

steps of duration Dt , during which the Hamiltonian maymany cases turns out to be useful for measuring the coupling
be assumed to be time independent. A good agreementstrength. The experimental MAS NMR and the 2D spectra of
between the experimental spectra and the calculated spectradoubly 13C-labeled zinc acetate were found to be in good agreement
was established this way, and the analytical formula of thewith the calculated spectra. q 1997 Academic Press

lineshape was given for the case of vanishing CSI anisot-
ropy. Similar results were obtained by Nakai and McDowell
(7 ) and Schmidt and Vega (8 ) using Floquet theory (17 ) .
Such numerical calculations, however, need considerable

INTRODUCTION computation time, especially to obtain the powder spectra,
where typically 104 crystallite orientations must be taken
into account.The magic angle spinning (MAS) technique in high field

The most popular approach in NMR, the average Hamil-nuclear magnetic resonance (NMR), if applied to a rare
tonian theory (18) (AHT), was used in the case of the so-spin-1

2 pair in powdered solids, yields spectra which display
called zeroth-order rotational resonance, where the differ-a number of special features absent in the spectra of samples
ence between the Larmor frequencies (DL ) of the two nu-containing dilute noncoupled spin-1

2 nuclei. Substantial
clei is zero or small compared to the rate of the samplebroadenings and splittings of the resonance lines appear if
rotation (9–13 ) . It is clear that AHT cannot be applied ina multiple of the sample spinning rate matches the difference
the traditional manner to the case of a coupled spin pair, ifbetween the resonance frequencies of the coupled nuclei.
DL is of the order of the rotation rate (vr ) and the exactThis phenomenon was observed first by Andrew et al. (1)
rotational resonance condition pvr Å DL , p Å 1, 2, rrr isand by now it is known as rotational resonance (2–8) . Al-
not fulfilled. Indeed, the first step in the traditional treatmentthough the largest effects in the spectra appear at exact rota-
is transformation of the Hamiltonian from the laboratorytional resonances, the dependence of the lineshape on the
frame to the specific one, doubly rotating at Larmor fre-sample spinning rate can occur also at spinning rates far
quencies of the individual nuclei. The next step, the proce-from exact resonances (6–13) . The extent of the effects
dure of averaging, unfortunately cannot be realized in adepends upon the magnitudes of dipolar (DI) , indirect spin–
general case due to the complicated time dependence of thespin (SSI) , and chemical shift interactions (CSI) of coupled
transformed Hamiltonian.nuclei as well as on the relative orientations of the tensor

A modification of the average Hamiltonian approach re-principal axis systems (PAS) of all these interactions. There-
cently proposed by us (19) allows one to describe the NMRfore a detailed analysis of the lineshapes in the NMR spectra
lineshapes of a coupled spin-1

2 pair in experiments with arbi-of paired nuclei can be used in structural studies of solids
trary ratios between DL and vr and including all the relevantwhere isolated nuclear spin pairs exist either naturally or
interactions. This modification uses for the doubly rotatingdue to specific isotopic labeling (5–13) . In order to reach
frame frequencies the corresponding multiples of vr . In thethe rotational resonance condition in case of limited sample

spinning rates, various additional radiofrequency excitations frame chosen this way the subsequent averaging can be car-
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54 KUNDLA ET AL.

ried out within the ordinary restrictions, while the small from the Hamiltonian which consists of six terms in the
difference between the actual Larmor frequencies and the laboratory frame,
multiples of vr can be treated as small perturbations in the
transformed Hamiltonian [see, e.g., Ref. (20)] . The main H Å H ( I )

Z / H (S )
Z / H ( I )

CS / H (S )
CS / HD / HJ . [1]

advantage of the AHT approach compared to the numerical
methods is that it provides analytical formulae for the single- Here the isotropic components of the CSI of both nuclei are
crystal resonance frequencies as well as the relative intensi- included in the corresponding Zeeman terms, i.e.,
ties. Thus the powder pattern simulations can be performed
very efficiently. At this point we wanted to refer to the other H (F )

Z Å 0v (F )
0 (1 0 s (F ) )Fz å 0v (F )

L Fz , F Å I , S , [2]
efficient numerical simulation procedures recently proposed
for rotational resonance. Edén et al. (21) have proposed an

and the Larmor frequencies v (F )
L relate to the frequencies of

explicit time domain calculation, performed over a single
the bare nuclei v (F )

0 through the trace of the corresponding
modulation period, which is a much more efficient numerical

CSI tensors
algorithm than the Floquet approach. A similar efficient cal-
culation routine using Floquet theory combined with pertur-

s (F ) Å 1
3Tr(s (F ) ) , F Å I , S . [3]bation treatment has been given recently by Nakai and Mc-

Dowell (22) , where the authors provide the recurrence for-
The chemical shift terms in Eq. [1] include the secular partmulae, making it possible to take into account high-order
of the anisotropic CSIperturbation correction terms in the calculation.

In this report we demonstrate that the AHT-based effective
H (F )

CS Å v (F )
0 s (F )

0 Fz , F Å I , S , [4]Hamiltonian allows one to describe the evolution of the two-
spin system state under arbitrary rotational resonance condi-
tions analytically via a vector formalism in a 16-dimensional where the screening tensor components are defined as
spin space. This formalism is handy for describing ordinary
rotational resonance spectra, but it is particularly useful in s (F )

0 Å s (F )
zz 0 s (F ) . [5]

getting the formulae for single-crystal line positions and rela-
tive intensities in more sophisticated experiments, e.g., 2D The DI term is taken in the truncated form
experiments, where the free evolution of the polarization
vector is interrupted from time to time by strong RF pulses, HD Å vDD0[IzSz 0 1

4(I/S0 / I0S/)] , [6]
because in this formalism the description of the polarization
vector motion during free evolution intervals does not de-

where
mand the use of a presentation diagonalizing the effective
Hamiltonian. We will apply this approach to the study of

vD Å g ( I )g (S )\ 2 /r 3 [7]2D NMR spectra of polarization exchange. As was shown
earlier (23) , an effective polarization exchange between the

and g denotes the gyromagnetic ratio and r is the distancecoupled nuclei takes place at rotational resonance. Studying
between the nuclei I and S . The last term in Eq. [1] takesthis effect in a 2D experiment may turn out to be a useful
into account the isotropic SSI between the nuclei in the pairmethod for obtaining information about the coupling interac-

tions in cases where the analysis of the powder lineshape is
HJ Å vJ[IzSz / 1

2(I/S0 / I0S/)] . [8]hindered by other overlapping lines in the 1D spectrum, e.g.,
if the spectrum contains lines from uncoupled spins.

The paper is organized as follows: In the next section we Due to mechanical rotation of the sample, the laboratory
present the general ideology of the theory. In the third section frame components of the screening and dipolar tensors de-
we will compare the experimental one-dimensional spectra pend harmonically on time,
with the simulated spectra, and the analysis of the powder
pattern in the presence of the CSI will be given. The fourth

s (F )
0 Å ∑

2

nÅ02

s (F )
0,n (d, h, l, m, n, a, b, g)e invrt , F Å I , Ssection is devoted to the description of the two-dimensional

spectra.

D0 Å ∑
2

nÅ02

D0,n(a, b, g)e invrt . [9]

GENERAL

Here the chemical shift anisotropy d and asymmetry h are
defined in the shielding tensor principal axes system in theIn the following the high field MAS NMR spectra of a

system of two spin-1
2 nuclei (I , S) will be treated. We proceed usual manner,
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ularly matters, it preserves the exact periodicity in time (fre-
quency vr ) of the transformed Hamiltonian. The latter qual-
ity allows one to form for the problem at hand an effective
Hamiltonian by averaging over the sample spinning period
v01

r with ordinary restrictions (18, 20) . At the averaging
procedure we confine ourselves to two steps; i.e., we choose
the effective Hamiltonian H (p ) as the sum of two terms

H (p ) Å H (0)
p / H (1)

p , [15]
FIG. 1. Schematic illustration of the notation in the sample spinning

rate depending on transformation T .
where H (1)

p takes into account the first-order correction from
the time-dependent terms to the average value of the trans-
formed Hamiltonian H (0)

p . This procedure is justified if
d Å s (PAS)

zz 0 s,

vr @ vD, vJ . [16]h Å (s (PAS)
yy 0 s (PAS)

xx ) /d. [10]

The Eulerian angles l, m, and n describe the orientation of It is immediately apparent that the general structure of the
the chemical shift tensor PAS relative to the molecule-fixed effective Hamiltonian,
coordinate system, which hereafter is taken with the z-axis
along the line connecting the two nuclei. The Eulerian angles H (p ) Å 0D (p )

Z IZ / D (p )
Z SZ / vJIZ SZ

a, b, and g determine the orientation of this molecule-fixed
0 KpI/S0 0 K*p I0S/ , [17]coordinate system in a single crystal relative to a rotor-fixed

frame in which the z-axis is oriented along the rotation axis
and tilted at the magic angle from the external magnetic does not depend on the actual value of the coefficient p ,
field direction. whereas the amplitudes of the effective Hamiltonian terms

In the high field experiments v ( I )
L and v (S )

L greatly predom-
inate over all the other amplitudes and frequencies in the D (p )

Z Å D (r )
p / D ( i )

p , [18]
Hamiltonian Eq. [1] . It is reasonable to choose for further
analysis another representation in which the influence of

where D (r )
p is given by Eq. [14],

Zeeman terms is suitably reduced. It appears that one of the
most useful possibilities for that is to use the sample spinning
rate-dependent transformation according to the definitions D ( i )

p Å v 2
D ∑

2

nÅ02
nx0,p

[16(p 0 n)vr ]
01D0,nD0,0n

QT Å T01QT 1 ,
/ v 2

J (4pvr )
01(1 0 dp ,0 ) , [19]

T{1 Å expH{itFSvL /
p

2
vrDIz / SvL 0

p

2
vrDSzGJ .

dp ,0 is the Kronecker delta, and

[11]

Kp Å
1
4
vDFD0,p /

1
vr

∑
2

nÅ02
nx0,p

1
n

(v ( I )
L s ( I )

0,n
The transformation of Eq. [11] is illustrated by the sketch
in Fig. 1. The notations in it have the following meaning:

0 v (S )
L s (S )

0,n )D0,p0nG 0 1
2
vJvL Å 1

2(v ( I )
L / v (S )

L ) , [12]

DL Å v ( I )
L 0 v (S )

L , [13]
1 Fdp ,0 /

1
pvr

(v ( I )
L s ( I )

0,p 0 v (S )
L s (S )

0,p )(1 0 dp ,0 )G
and the value of integer p , i.e., the order of the actual realized

[20]rotational resonance, is determined by the conditions

DL Å pvr / 2D (r )
p , 01

4vr õ D (r )
p õ 1

4vr . [14] must be calculated for any particular value of p .
As soon as the effective Hamiltonian is known, the evolu-

tion of the spin system state can be determined by solutionThe transformation above leads to some kind of symmetry
relative to the parameters of nuclei I and S , and, what partic- of the Liouville equation
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56 KUNDLA ET AL.

in the receiver coil-selected subspace. The signal from a spinrT( t) Å e0 itH (p)
rT(0)e itH (p)

, [21]
pair in the powder sample is calculated by the formula

in the presentation of Eq. [11].
The density operator r may be examined as the state

S } ∑
l ,mÅ{1

HaS1 / l
D (p )

Z

Dp
DcosFSv ( I )

L 0 D (r )
pvector in a 16-dimensional spin space and, in accordance

with this, Eq. [21] as the formal description determining the
motion of the state vector in the course of experiment. Thus / lDp / m

1
2
vJD tG / bS1 0 l

D (p )
Z

Dp
Dthe full analytical description of the spin system state evolu-

tion is always available independent of the realized value of
p and the initial state r(0) if only the formal law of Eq. 1 cosFSv (S )

L / D (r )
p / lDp / m

1
2
vJD tGJ ,

[21] is specified for all the independent spin-space compo-
nents. With the Hamiltonian of the form Eq. [17] this proce-

[23]
dure is possible and the detailed expressions, describing the
motion of the polarization vector, i.e., the evolution of the

wherestate vector in the spin space, are presented in the Appendix.
It is remarkable that the full 16-dimensional spin space is

Dp Å
√
(D (p )

Z ) 2 / KpK*p . [24]made up of four subspaces, in each of which the polarization
vector evolves independently; i.e., the vector components

In Eq. [23] we have considered that the phase distortionsof different subspaces do not mix under the H (p )-governed
in the signal from the single crystal (5, 19) are canceled outevolution. Moreover, there is a subspace (see [A8] and [A9]
in a powder sample where one always has a pair of crystal-in the Appendix) where the evolution does not take place
lites oriented at angles (b, g) and (1807 0 b, 1807 / g) inat all. In the other subspaces the polarization exchange be-
the rotor-fixed frame.tween the nuclei I and S takes place. The fastest polarization

Both the effective Hamiltonian given in Eq. [17] withexchange occurs in the third subspace [A6]. At that the
Eqs. [18] – [20] and the expression for a single-crystal signalpolarization vector motion does not depend on isotropic SSI
show that every MAS NMR experiment of a coupled spin(a weak indirect dependence appears only through the ampli-
pair belongs to one of the six possible regions (19) , de-tudes D (p )

Z and Kp) unlike the case in the first and the second
pending on the actual value of p . The parameters Kp andsubspaces, where SSI contributes directly to the frequencies.
D ( i )

p at different p are collected in the Table 1, where theNaturally, an analytical description of the spin state evolu-
components of the dipolar tensor at MAS aretion is useful for the analysis of ordinary rotational resonance

experiments as it links the spectral parameters to the single-
crystal internal interactions, but the main goal of a full ana-

D0,{1 Å |i

√
2
2

sin 2b,
lytical description of polarization vector evolution is found
in the design and interpretation of experiments consisting of
more than one evolution period under the rotational reso- D0,{2 Å

1
2

sin2b [25]
nance conditions.

In the following section we apply the theory to the ordi-
and we have taken the molecule-fixed frame coordinate withnary rotational resonance spectra.
the z-axis along the line connecting the two nuclei. The
components of the CSI tensor for the I and S nuclei s0,{k ,ORDINARY MAS NMR SPECTRA OF A COUPLED PAIR
k Å 1, 2, can be obtained by transforming the chemical shiftOF SPIN-1

2 NUCLEI
tensors in the appropriate way,

Signal Expression

In this section we treat the experiments in which the NMR
s (F ,PAS)

(l
F
,m

F
,n

F
)
s (F ,molecule)

(a, b, g)

signal in a receiver coil directed along the x-axis is registered
right after the generation of the polarization vector compo-
nent in the xy-plane of the laboratory frame s (F ,rotor )

(u)
s (F ,lab) , F Å I , S ,

r(0) } a(I/ / I0) / b(S/ / S0) . [22] where u is the magic angle. As given in the Table 1 [see
also Ref. (19)] , the experiments at high rotation rates (p Å
0) may be classified as a pure homonuclear case, since theNote that the possible existence of z-components of the ini-

tial vector r(0) is unimportant in the present case since they Larmor frequencies of both nuclei are not distinguishable
on the scale of vr as the measuring unit. Nevertheless ando not give rise to matrix elements which produce a signal

AID JMR 1240 / 6j24$$$$64 11-18-97 11:35:14 maga



57MAS NMR SPECTRA OF A DIPOLAR-COUPLED HOMONUCLEAR SPIN-1
2 PAIR

TABLE 1
Interaction Parameters at pth Rotational Resonance

p vr Kp, D(i)
p

0 vr ú 2DL K0 Å
vD

16vr

{[v(I)
L (s(I)

0,2 0 s(I)
0,02) 0 v(S)

L (s(S)
0,2 0 s(S)

0,02)]sin2 b / i2
√
2[v(I)

L (s(I)
0,1 / s(I)

0,01) 0 v(S)
L (s(S)

0,1 / s(S)
0,01)]sin 2b} 0 1

2
vJ.

D(i)
0 Å 0.

1
2
3
DL õ vr õ 2DL K1 Å

vD

8 H0i
√
2 sin 2b / 1

vr
F0(v(I)

L s
(I)
0,01 0 v(S)

L s(S)
0,01)sin2 b / i

√
2
2

(v(I)
L s

(I)
0,2 0 v(S)

L s(S)
0,2)sin 2bGJ

0 vj

2vr

(v(I)
L s

(I)
0,1 0 v(S)

L s(S)
0,1).

D(i)
1 Å

v2
D

16vr
Ssin2 b 0 7

6
sin4 bD / v2

j

4vr

.

2
2
5
DL õ vr õ

2
3
DL K2 Å

vD

8 Fsin2 b 0 i

√
2
vr

(v(I)
L s

(I)
0,1 0 v(S)

L s(S)
0,1)sin 2bG0 vJ

4vr

(v(I)
L s

(I)
0,2 0 v(S)

L s(S)
0,2).

D(i)
2 Å

v2
D

6vr
Ssin2 b 0 125

128
sin4 bD / v2

J

8vr

.

3
2
7
DL õ vr õ

2
5
DL K3 Å

vD

8vr
F(v(I)

L s
(I)
0,1 0 v(S)

L s(S)
0,1)sin2 b0 i

√
2
2

(v(I)
L s

(I)
0,2 0 v(S)

L s(S)
0,2)sin 2bG .

D(i)
3 Å

3v2
D

32vr

(sin2 b 0 4
5

sin4 b) / v2
J

12vr

.

4 K4 Å
vD

16vr

(v(I)
L s

(I)
0,2 0 v(S)

L s(S)
0,2)sin2 b.

2
9
DL õ vr õ

2
7
DL

D(i)
4 Å

v2
D

15vr
Ssin2 b 0 27

32
sin4 bD / v2

J

16vr

.

¢5 K§5 Å 0.vr õ
2
9
DL

D(i)
p Å

v2
D

32vr
S 2p

p2 0 1
sin2 2b / p

p2 0 4
sin4 bD / v2

J

4pvr

.

effective coupling between the spins exists (K0 x 0). The to the cases p Å 1 and p Å 2. These cases are obviously the
most difficult ones for the applicability of the theory. Onstrongest coupling between the two spins occurs in cases p

Å 1 and p Å 2. Here the effective coupling includes the the other hand, this region of rotation rates is definitely the
most useful one for structural studies.pure scaled dipolar interaction, the cross-effect of dipolar

and anisotropic CSI of both nuclei, and the cross-effect of
isotropic SSI and anisotropic CSI. At lower rotation rates Experimental
(p Å 3 and p Å 4) the effective coupling is weaker and is

The calculated spectra are compared with the experimen-made up solely by the cross-effect of DI and CSI anisotropy.
tal 13C MAS NMR spectra of 13C in highly enriched solidExperiments at the lowest rotation rates (p § 5) may be
Zn-acetate, Zn(CH3COO)2. This compound has a usefulregarded as the case of heteronuclear coupling. Here the
structure with only two magnetically different sites for car-coupling between spins caused by anisotropic interactions
bon, and the 4.1% of 67Zn nuclei (I Å 5

2) possessing a lowvanishes (Kp Å 0). It is clear that the most complicated
powder lineshapes are expected at the rotation rates around gyromagnetic ratio have only a very minor effect on the

neighboring carboxyl carbon (COO) resonance. The samplethe first and the second rotational resonances, corresponding
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of 13C doubly labeled Zn(13CH3
13COO)2 was synthesized

from the 99.9% 13C doubly labeled acetic acid (Aldrich) .
NMR measurements were performed on a Bruker CXP-200
spectrometer operating at 50.31 MHz for 13C NMR in a
4.7-T external magnetic field. A homebuilt MAS probehead
designed for a 4-mm rotor diameter allowed us to use suffi-
ciently fast sample spinning rates. The spectra were obtained
by the conventional cross-polarization and proton decou-
pling technique. Usually two FIDs at a constant sample spin-
ning frequency were accumulated. The instability of the
spinning frequency during the two scans did not exceed 1
Hz. The frequency shifts in Figs. 2 and 4 are measured with
respect to the resonance frequency of the methyl carbon in
natural abundant Zn-acetate at 23.7 ppm from TMS.

The numerical calculations were performed at a Gate-
way 2000 4DX2-66V computer. Typically 10 4 crystallite
orientation were taken into account in the simulation of
the powder patterns. The computation time of 1D spec-
trum was about 20 s.

Lineshapes at the First Rotational Resonance

In Fig. 2a we show the comparison of the calculated (full
lines) and observed (dotted lines) 13C MAS NMR spectra
from methyl carbon sites of Zn-acetate. The actual parame-
ters for the homonuclear 13C– 13C pair in Zn-acetate were
taken from Ref. (5) . A uniform residual Lorentzian half-
width of 20 Hz was convoluted in the calculated spectra. In
Fig. 2b the calculated spectra are shown without this addi-
tional broadening. As one can see the spectrum consists of
two bands of equal width. At exact resonance (nr Å 8.03
kHz) the two bands have about equal intensities and shapes.
At higher or lower sample spinning rates one of the bands
(the main band) remains located close to the Larmor fre-
quency of that nucleus and the other band is separated from
the main band by a frequency equal to the offset DL 0 pvr FIG. 2. 13C MAS NMR spectra of the methyl carbon in solid 99.9%
from the exact rotational resonance. With increasing offset 13C-enriched Zn-acetate as a function of sample spinning frequency nr

around the first rotational resonance. The following parameters were used:the widths of the bands decrease and the intensity of the
vL/2p Å 50.31 MHz, DL/2p Å 8030 Hz and vJ /2p Å 52 Hz, vD/2p Åsecond band decreases. At large offset values the second
2000 Hz, the chemical shift anisotropy for the CH3 carbon d (S) Å 23 ppm,band is outside the frequency range given in the figure.
asymmetry h (S) Å 0.17, with PAS oriented at Euler angles with respect to

Comparison of the experimental and calculated spectra dem- the molecule-fixed frame (l S , mS , n S)Å (0, 0, 0); corresponding parameters
onstrates that agreement is surprisingly good over the whole for the carboxyl site, COO: d (I) Å 79 ppm, h (I) Å 0.34 and (l I , mI , n I) Å

(0, p /2, 0) . (a) Observed (dotted lines) and calculated (full lines) spectra.observed range of sample spinning rates.
A common Lorentzian half-width of 20 Hz was convoluted in the calculatedWe now proceed to analyze the powder patterns at exact
spectra. (b) Calculated spectra without additional broadening.resonance in the presence of CSI. In Fig. 3 we have shown

typical powder patterns at the first rotational resonance. For
clarity we ignored here the SSI, taking vJ Å 0. In the case CSI with h ( I ) Å 0. In this case it is possible to provide
of vanishing CSI the powder pattern is relatively simple analytical formulae for the positions of the singular points
(Fig. 3a) , showing the two singular peaks at frequency D10 in the powder pattern for two basic mutual orientations of

the CSI and DI tensors m Å 0 and m Å 907, which might beÅ {
√
2vD/8 [see Refs. (5, 19)] . The effect of CSI on the

lineshape depends on the magnitudes and mutual orienta- useful for the estimates.
In the m Å 0 case (see Fig. 3b) the powder pattern is verytions of the DI and CSI tensors. In order to analyze the effect

we have confined ourselves to the case where only one of similar to the case of vanishing CSI, showing two singular
peaks at {D1a . Using the parametersthe nuclei, (I) , in the pair has substantial anisotropy of the

AID JMR 1240 / 6j24$$$$65 11-18-97 11:35:14 maga



59MAS NMR SPECTRA OF A DIPOLAR-COUPLED HOMONUCLEAR SPIN-1
2 PAIR

At moderate values of the CSI anisotropy, ÉcÉ ° 2,

D1a à Z
√
2
8

vD
16

16 / c Z . [29]

In the m Å 907 case the singular points in the powder pattern
have the following positions:

D1b Å Z
√
2
8

vD
1
4

√
c 2 / 1

8
d 2Z , [30]

D1c Å Z
√
2
8

vD

√
S1 0 1

8
cD2

/ 2S5d

64 D
2Z . [31]

The last singularity exists in the range 032 ° c ° 8,

D1d Å Z
√
2
8

vDF1 / c

16
(3 / jd)G√

1 0 j 2
d Z , [32]

where

jd Å [0(3c / 16) /
√
(3c / 16)2 / 8c 2] /4c , [33]

and the singularity exists in the range 04 ° c ° ` . Here
we must add that the singularity at D1c is a peak in the
powder pattern if d ú 0 or the most shifted shoulder if d õ
0 and, similarly, the singularity at D1d is the most shifted
shoulder if dú 0 and the peak if dõ 0. Additional singularit-
ies appear in the powder pattern if the absolute value of theFIG. 3. Typical powder patterns (in units of vD) of the coupled spin-

1
2 pair exactly at the first rotational resonance depending on the mutual parameter c ( the CSI anisotropy) becomes larger, c õ 04,
orientation of the CSI and DI tensors. Positions of the noted singularities or c ¢ 8, but for such cases it will be more convenient to
are given in the text. The model parameters: DL/2p Å 8.0 kHz, vD/2p Å

find the powder pattern from the simulation.2.0 kHz, h (I) Å 0, d (S) Å 0, vJ Å 0. (a) d (I) Å 0; (b) d (I) Å 200 ppm, m (I)

Å 0; (c) d (I) Å 200 ppm, m (I) Å p /2.
Lineshapes at the Second Rotational Resonance

A similar comparison of the calculated and recorded Zn-
acetate lineshapes was made for sample spinning speeds

c Å vLd

DL

, around the second rotational resonance which occurs at vr /
2p Å 4015 Hz. In Fig. 4a we have plotted calculated (full
lines) and experimental (dotted lines) spectra for this case.d Å 2vD

3DL

, [26]
The parameters and the additional line broadening have been
taken to be the same as for the case p Å 1 in Fig. 2. In Fig.
4b the spectra are shown without the Lorentzian broadening.where d is the only relevant anisotropy of the CSI, the singu-

lar peak position can be evaluated as One can see that the spectra around the second rotational

D1a Å Z
√
2
8

vD

√
F1 0 c

16
(1 / ja)G2

(1 0 j 2
a) / S

√
2d

64 D
2

(5 0 7ja)2(1 / j 2
a) Z , [27]

where resonance have a more complicated structure than in the p
Å 1 case. Still, there are two bands separated by the fre-
quency equal to the corresponding offset from exact reso-ja Å [16 0 c 0

√
(16 0 c)2 / 8c 2] /4c . [28]
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DI tensors at m Å 0 and m Å 907 in the case of exact second
rotational resonance. As before we have considered the case
when the CSI anisotropy of one nucleus in the pair essen-
tially exceeds that of the second nucleus. Compared to the
case at the first rotational resonance, the lineshapes at the
second rotational resonance are extremely sensitive to the
particular set of the parameters of the relevant CSI tensor.

In addition to the peak always present at D20 Å {vD/8, as
in the case of pure DI [see Refs. (5, 19)], the other singularities
noted in the figure appear at the following frequencies:

(a) case m Å 07

D2a Å Z18 vD
1 / 4c

16c 2

√
(1 / 4c)2 / S4d 0 d

cD
2Z ,

[34]

where the parameters c and d are given by Eq. [26] and the
singularity exists if

FIG. 4. 13C MAS NMR spectra of the methyl carbon in 13C-enriched
Zn-acetate as a function of sample spinning frequency, nr , around the second
rotational resonance. The same sample and parameters were used as given
in the legend to Fig. 2. (a) Observed (dotted lines) and calculated (full
lines) spectra. A common Lorentzian half-width of 20 Hz was convoluted in
the calculated spectra. (b) Calculated spectra without additional broadening.

nance, DL 0 2vr . The agreement between simulation and
experiment is relatively good, although in details the differ-
ences are larger than in the p Å 1 case, especially at spinning
rates close to the exact resonance. This may be caused by
partial violation of the fast spinning condition in Eq. [16].
Additional errors can occur due to the always existing rota-

FIG. 5. Typical powder patterns of the coupled spin pair exactly at thetional sidebands which overlap the main lines near the rota-
second rotational resonance as a function of the magnitude of the anisotropytional resonance and are not taken into account in the calcula-
of the relevant CSI tensor at two Euler angles m between the z-axes of thetions. Nevertheless we wanted to give the detailed lineshape
CSI and DI tensors. The positions of the noted singularities are given in the

behavior also for this case. In Fig. 5 we have plotted the text. The model parameters: DL/2p Å 8.0 kHz, vD/2p Å 2.0 kHz, h (I) Å 0,
powder patterns as a function of the size of the anisotropy d (S) Å 0, vJ Å 0. (a) d (I) Å 250 ppm; (b) d (I) Å 100 ppm; (c) d (I) Å 50

ppm; (d) d (I) Å 050 ppm; (e) d (I) Å 0100 ppm; (f ) d (I) Å 0200 ppm.of the CSI for the two mutual orientations of the CSI and
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c ° 0 1
8
0

√
S3

8D
2

0 Sd 0
√
2
4 D

2

, or c ¢ 1
4

; [35]

D2b Å Z18 vD
(1 / 4c)d

4c 2 Z , [36]

and the singularity exists if

c ° 0 1
8
0

√
S3

8D
2

0 Sd 0
√
2
4 D

2

. [37]

(b) case m Å 907

D2c Å Z18 vD
4c 0 1

16c

√
(4c 0 1)2 / S4d / d

cD
2Z , [38]

which exists if

FIG. 7. 2D polarization exchange spectrum of doubly 13C-labeled Zn-
acetate at the first rotational resonance.

c ¢ 1
8
/

√
S3

8D
2

0 Sd 0
√
2
4 D

2

, or 0 1
2
° c ° 0 1

4
;

[39]
out to be instructive for estimates of the CSI from the powder
shape at the second rotational resonance.

D2d Å Z18 vDSc 0 1
2D

2
√

1
c(c 0 1) Z , [40]

2D SPECTRA OF POLARIZATION EXCHANGE

which exists if Examination of Eqs. [A5] and [A7] makes it clear that
in order to register the polarization exchange phenomena
in a coupled spin pair the most promising approach is to

c ¢ 1 /
√
2

2
, or c ° 0 1

2
. [41] utilize the process in the third subspace [A6] . Polariza-

tion vector evolution and thus the polarization exchange
in this subspace begins as soon as the vector componentAlthough the formulae for the second resonance are more
proportional to Iz is not equal to that of Sz ( see [A10] ) .complex than those for the first resonance, they may turn
Customarily a 2D experiment contains the preparation,
evolution, and registration stages. Naturally, it is desir-
able to make the difference between the polarization vec-
tor Iz and Sz components as large as possible at the begin-
ning of the evolution period and, at the same time, to
localize the whole polarization vector in the third sub-
space. Figure 6 presents one of such pulse sequences we
have used for this purpose. Here after the cross-polariza-
tion a suitably delayed p /2 pulse (DLt0 Å p /2 ) turns the
I and S nuclear magnetizations along and opposite to the
direction of the external magnetic field, respectively. Dur-
ing the evolution period t1 polarization exchange between
the two nuclei takes place, which is recorded after the

FIG. 6. Pulse sequence for the 2D polarization exchange experiment. readout pulse during t2 . In fact a similar manipulation
After the cross-polarization pulse CP the magnetization vectors of the two of the spin system for polarization exchange study was
coupled 13C nuclei obtain opposite directions during the interval t0 Å p /

proposed earlier by Raleigh et al. (23 ) , where the antipar-DL , and after that the vectors are flipped to the z-axis by a 907 pulse.
allel magnetization was created by selectively invertingPolarization exchange takes place during the evolution time t1 and the

spectrum is recorded after a 907 detection pulse. one of the paired spins. The 2D spectrum obtained by
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such a pulse sequence at the first rotational resonance
from the doubly 13C-labeled Zn-acetate is given in Fig.
7. As one can see, the contour plots for the two coupled
nuclei have almost identical shape. The sum of the spectra

(a)
p

2
vr / lDp / m

1
2
vJ and

3p

2
vr / lDp / m

1
2
vJ ,

where l , m Å {1;

(b) pvr / l2Dp and 2pvr / l2Dp ,

where l Å 01, 0, 1;

(c) 0 and 2Dp .

in the vertical direction looks like a usual 1D spectrum
at rotational resonance, except that the CH3 line is in-
verted. The spectrum in the horizontal direction around
the CH3 resonance shows a symmetrical pattern with the
splitting about twice as large as in the 1D spectrum.

With the universal rules for the polarization vector evolu-
tion presented in the Appendix one can get a theoretical Here we must point out that the amplitudes of the terms
description of the 2D spectrum obtained by this experiment. (a ) and (b) are proportional to the value of the parameter
We start from the polarization vector after the preparation s in Eq. [43] , which in usual cases is small. Therefore
period in the form the low-frequency terms of the signal in band (c ) merit

our interest first of all.
This part of the signal in the vicinity of v ( I )

L is collectedrpreparation } 0IZ / SZ /
s

c
∑ kjUj , [42]

into the following formula:

S ( I ) } 0 ∑
lÅ{1

l
1
2 HS1 0 D (p )

Z

Dp
DF S1 / D (p )

Z

Dp
D 0 1

2 SIm(Kp)
Dp

D2Gsin 2Dpt1J
1 cos

1
2
vJt cos(v ( I )

L 0 D (r )
p / lDp) t

0 ∑
lÅ{1

H l
1
2
D (p )

Z

Dp
S1 / l

D (p )
Z

Dp
D2

/ KpK*p
D 2

p
S1 / l

1
2
D (p )

Z

Dp
Dcos 2Dpt1J

1 cos
1
2
vJt sin(v ( I )

L 0 D (r )
p / lDp) t . [45]

where Uj denotes all the remaining spin-space base opera- Naturally, in the receiver coil there are also induced the
tors ( see Appendix) ; the absolute value of the coefficient signal components of S (S ) at frequencies around v (S )

L . The
formula determining the S (S ) components can be obtainedkj is smaller than 1 and the coefficients s and c have the
from Eq. [45] by changing the sign of the second term andmeaning
substituting the factors cos/sin(v ( I )

L 0 D (r )
p / lDp) t by

cos/sin(v (S )
L / D (r )

p 0 lDp) t , respectively.s Å sin Dpt0 ,
Equation [45] does not describe the signal induced in the

c Å cos Dpt0 . [43] receiver coil by a single coupled spin pair, but provides the
sum of the signals from two coupled spin pairs oriented at

One can show that the polarization vectors of all the crystal- angles (b, g) and (1807 0 b, 1807 / g) in the rotor-fixed
lites are localized in the third subspace only if frame, respectively. Such simplification is always justified

for a randomly oriented powder. The formula for a single
pair in a single crystal is more complicated, involving phasep

Dp

DL

! 1. [44]
distortions.

Numerical simulation of the 2D spectrum starting from
In this case the spectra in the v1 dimension reflect the polar- Eq. [45] is not very convenient, because it needs as many
ization exchange phenomena in the third subspace and the powder averages as the number of data points in the simu-
spectra in the v2 dimension present the ordinary MAS NMR lated 2D array of FIDs. It is more expedient to use expres-
spectra. A complete analysis of this experiment shows that sions where the complex Fourier analysis has already been
the full spectrum in the v1 dimension appears at the follow- performed analytically. As a result, one gets six different

(complex) amplitudes generated by a coupled spin pair (b,ing frequencies:
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where wD is the detector phase angle and either upper or
lower signs must be selected.

The spectrum in the vertical direction I(v2) exactly coin-
cides with the ordinary MAS NMR spectrum:

I(v2{) } iS1 | D (p )
Z

Dp
De iwD . [49]

The spectrum in the horizontal direction I(v1) is symmetric,

I(v1/) Å I(v10) } iS1 0 D (p )
Z

Dp
DS1 / D (p )

Z

Dp
De iwD

I(v1 Å 0) } i2SD (p )
Z

Dp
D2

e iwD , [50]

and, as already stated, it does not show the splitting causedFIG. 8. Schematic illustration of the peak positions and amplitudes in
the 2D polarization exchange spectrum generated by a coupled spin-1

2 pair by SSI.
and its co-oriented pair (see text) . The splitting of the resonance lines by Correct phasing of the experimental 2D spectra after the
vJ due to SSI occurs only in the v2 dimension. double Fourier transformation is not always an easy task. A

somewhat better solution is to use in the second FT (complex
Fourier analysis over the evolution time t1) only the real
part of the amplitudes obtained after the first FT (complexg) and its copair (1807 0 b, 1807 / g) together as depicted
Fourier analysis over the registration time t2) . Such proce-in Fig. 8. The SSI induces additional splitting of the reso-
dure has been applied for the spectrum presented in Fig. 7.nance lines by vJ , but only in the v2 dimension. The nonzero
In this case the amplitudes in the 2D spectra are as follows:amplitudes are generated at points with the coordinates in

the 2D frame,

A(0, 0) Å A(0, /)* } S1 / 1
2
D (p )

Z

Dp
Dv1 Å 0 and v1{ Å {2Dp [46]

in the v1 dimension, and at 1 KpK*p
D 2

p

sin wD 0 i
1
2 FS1 0 D (p )2

Z

D 2
p
D

v2{ Å D (r )
p { Dp [47]

0 1
2 S1 0 D (p )

Z

Dp
DSIm(Kp)

Dp
D2Gcos wD,

in the v2 dimension, which is additionally split by {1
2vJ ,

and related to v ( I )
L . The amplitudes (see Fig. 8) are evaluated

A(/, 0) Å A(/, /)* } S1 0 1
2
D (p )

Z

Dp
Das

1 KpK*p
D 2

p

sin wD / i
1
2 FS1 0 D (p )2

Z

D 2
p
DA({, {) } iFS3 { D (p )

Z

Dp
D KpK*p

D 2
p

0 1
2 S1 0 D (p )

Z

Dp
DSIm(Kp)

Dp
D2Gcos wD,0 1

2 S1 0 D (p )
Z

Dp
DSIm(Kp)

Dp
D2Ge iwD ,

A(|, 0) } { D (p )
Z

Dp
S1 { D (p )

Z

Dp
D2

sin wD. [51]A({, 0) } |i2
D (p )

Z

Dp
S1 | D (p )

Z

Dp
D2

e iwD ,

It is easy to see that the amplitudes in the spectra in theA({, |) } iFS1 | D (p )
Z

Dp
D KpK*p

D 2
p present case do not differ essentially from those in the pre-

ceding variant of the calculation procedure. Indeed, in order
to be valid one needs only to substitute the factors ie iwD in/ 1

2 S1 0 D (p )
Z

Dp
DSIm(Kp)

Dp
D2Ge iwD , [48]

Eqs. [49] and [50] by sin wD.
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FIG. 9. Experimental (a) and simulated (b) 2D polarization exchange spectrum of the carboxyl carbon site of doubly 13C-labeled Zn-acetate at the
first rotational resonance.

In Fig. 9a we have given the 2D polarization exchange recorded by the MAS NMR technique from polycrystalline
samples of doubly 13C-labeled Zn-acetate demonstrates ex-spectrum of the CH3 resonance at the first rotational reso-

nance observed in doubly 13C-labeled Zn-acetate. The simu- cellent agreement for the spinning rates around the first rota-
tional resonance. The agreement of the spectra around thelated spectrum given in Fig. 9b is obtained for the case p Å

1 using the formulae [51] and the CSI and DI tensor parame- second rotational resonance is not perfect, but good. The
differences between simulated and calculated spectra in thisters for Zn-acetate as given before for Fig. 2. It is obvious

that the calculated spectrum reproduces comparatively well case can be caused by some violation in our experiment of
the fast spinning condition. In addition, the vector formalismthe experimental spectrum, although the splitting due to the

SSI in the experimental spectrum is not resolved. This may developed here enables one to describe the 2D spectra of
polarization exchange between the coupled nuclei. A reason-be due to the deviation of the sample spinning frequency

from exact resonance, because in this comparatively long able agreement between the calculated and experimental 2D
spectra shows that this type of experiment can be very usefulexperiment the stability of the sample speed was not better

than {15 Hz. On the other hand, stability of the spinning in structural studies, where the lineshape analysis of ordinary
rotational resonance spectra is not possible.frequency is not very critical to the spectrum in the F1 (v1 /

2p) dimension, because the polarization exchange frequency
2Dp depends only weakly upon the deviation from exact

APPENDIX
resonance. A similar comparison is carried out also at the
second rotational resonance (p Å 2) presented in Fig. 10.

The H (p )-induced motion of the state vector r in spinHere the spectra in the F1 dimension contain a peak at zero
space may be described by the equationfrequency and two maxima at both sides of the zero-fre-

quency peak. The low-frequency peak in full analogy to the
1D spectrum at the second rotational resonance (see Figs. rT( t) Å L(H (p ) )r(0) , [A1]
4 and 5b) indicates the contribution from the CSI term.

where the matrix of the Liouville superoperator L(H (p ) ) isCONCLUSIONS
determined by Eq. [21].

We have shown that the average Hamiltonian theory can It appears that the 16-dimensional spin space splits into
be successfully applied to describe the MAS NMR spectra four independent subspaces in the sense that the vector com-
of a dilute homonuclear spin-1

2 pair over a broad region of ponents of different subspaces do not mix during the H (p )-
induced motion of the polarization vector. Thus the 16 1sample spinning rates, including the exact rotational reso-

nances. Comparison of the simulated spectra with the spectra 16 matrix of L may be written in the block-diagonal form
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FIG. 10. Experimental (a) and simulated (b) 2D polarization exchange spectrum of the methyl carbon site of doubly 13C-labeled Zn-acetate at the
second rotational resonance.

L(H (p ) ) Å

\L (1)\
\L (2)\

\L (3)\
\L (4)\ \L (1)\ Å

N1
1
4N2 01

4N*3 N*4

N2 N1 N*4 0N*3

N3 N4 N*1 0N*2

N4
1
4N3 01

4N*2 N*1

,

and, equivalently to that, Eq. [A1] may be substituted by

\L (2)\ Å \L (1)\*, [A5]

rT( t) Å ∑
4

iÅ1

L ( i ) (H (p ) )r ( i ) (0) , [A2] where

N1 Å Scos Dpt / i
D (p )

Z

Dp

sin DptDcos
1
2
vJt ,where L ( i ) and r ( i ) (0) denote in the i th subspace operating

Liouville superoperator and the state vector component, be-
longing to that subspace, respectively.

N2 Å 2SD (p )
Z

Dp

sin Dpt 0 i cos DptDsin
1
2
vJt ,Now, making use of the spin operator set

( i Å 1) r (I/ , I/SZ , IZ S/ , S/) [A3] N3 Å 0i2
K*p
Dp

sin Dpt cos
1
2
vJt ,

N4 Å 0
K*p
Dp

sin Dpt sin
1
2
vJt .as the base operators of the first subspace in the succession

given above and the set of spin operators

In the case when the third subspace operator set
( i Å 2) r (I0 , I0SZ , IZ S0 , S0) [A4]

( i Å 3) r (IZ , I/S0 , I0S/ , SZ ) [A6]

as the base operators of the second subspace in the given
succession, the matrices of the Liouville superoperators L (1) is used as the base of that spin space and retaining the

succession as in [A6], the matrix \L (3)\ may be expressedand L (2) , operating in the first and the second subspace, are
defined by the equations in the following way:
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and H (p ) does not cause the departure of the polarization
vector from its thermal equilibrium state. As soon as a x

\L (3)\ Å

N5 N8 N*8 N10

N7 N6 N9 0N7

N*7 N*9 N*6 0N*7
N10 0N8 0N*8 N5

. [A7] b , evolution in the third subspace takes place.
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N5 Å F1 0 KpK*p
2D 2
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